MacMusic  |  PcMusic  |  440 Software  |  440 Forums  |  440TV  |  Zicos
theory
Recherche

'Wobbly Spacetime' May Help Resolve Contradictory Physics Theories

mercredi 6 décembre 2023, 08:00 , par Slashdot
Scientists have proposed a framework that they say could unify quantum mechanics and Albert Einstein's theory of general relatively. 'Quantum theory and Einstein's theory of general relativity are mathematically incompatible with each other, so it's important to understand how this contradiction is resolved,' said Prof Jonathan Oppenheim, a physicist at University College London, who is behind the theory. The Guardian reports: Until now, the prevailing assumption has been that Einstein's theory of gravity must be modified, or 'quantized,' in order to fit within quantum theory. This is the approach of string theory, which advances the view that spacetime comprises 10, 11 or possibly 26 dimensions. Another leading candidate, advanced by Rovelli and others, is loop quantum gravity, in which spacetime is composed of finite loops woven into an extremely fine fabric. Oppenheim's theory, published in the journal Physical Review X, challenges the consensus by suggesting that spacetime may be classical and not governed by quantum theory at all. This means spacetime, however closely you zoomed in on it, would be smooth and continuous rather than 'quantized' into discrete units. However, Oppenheim introduces the idea that spacetime is also inherently wobbly, subject to random fluctuations that create an intrinsic breakdown in predictability.

'The rate at which time flows is changing randomly and fluctuating in time,' said Oppenheim, although he clarifies that time would never actually go into reverse. 'It's quite mathematical,' he added. 'Picturing it in your head is quite difficult.' This proposed 'wobbliness' would result in a breakdown of predictability, which, Oppenheim says, 'many physicists don't like.'

Ultimately, whether the theory is correct is not an aesthetic preference, but a question of whether it is a faithful representation of reality. A second paper, published simultaneously in Nature Communications and led by Dr Zach Weller-Davies, formerly of UCL and now at Canada's Perimeter Institute, proposes an experiment designed to uncover 'wobbles' in spacetime through tiny fluctuations in the weight of an object. For example, the International Bureau of Weights and Measures in France routinely weigh a 1kg mass, which used to be the 1kg standard. If the fluctuations in measurements of this 1kg mass are smaller than a certain threshold, the theory can be ruled out. 'We have shown that if spacetime doesn't have a quantum nature, then there must be random fluctuations in the curvature of spacetime which have a particular signature that can be verified experimentally,' said Weller-Davies.

Read more of this story at Slashdot.
https://science.slashdot.org/story/23/12/06/0118223/wobbly-spacetime-may-help-resolve-contradictory-...

Voir aussi

News copyright owned by their original publishers | Copyright © 2004 - 2024 Zicos / 440Network
Date Actuelle
lun. 20 mai - 07:52 CEST